Abstract

Techniques such as selective ion exchange can be used to remove traces of heavy metals. The recently created resins provided quicker sorption kinetics and a high resin capacity for metal ions such as Lead (Pb²⁺), Copper (Cu²⁺), Zinc (Zn²⁺), Cadmium (Cd²⁺), and Nickel (Ni²⁺) ions. The elimination of Pb²⁺ and Cu²⁺ ions from aqueous solutions was examined in the current work. Purolite® C100, a strong acid cation-exchange resin, was used in experimental studies. Using packed-column chromatography, the impacts of operating factors on metal ion exchange were examined. These parameters included resin dose, initial pH, residence time, and metal ion concentration with ranges of 40 - 80 gs, 3 - 12, 30 - 90 min, and 50 -150 parts per million respectively. As part of exchange research, different doses of resin are brought into contact with a fixed volume of solution containing different concentrations and pHs of Pb²⁺ and Cu²⁺ ions for different periods. An Atomic Absorption Spectrophotometer (AAS) approach was used to measure the concentrations of metal ions. Experimental data on ion exchange were evaluated using Langmuir, Freundlich, and Temkin models.The results showed that there is a clear competition between lead and copper, as it was found that there is a convergence between the removal rates for both metals under the same conditions. The ion-exchange recovery of Cu approached 94.37 %, but Pb recovery was 92.9 % with Purolite® C100 resin dose range of 40 g to 80 g in the pH range of 3 to 12.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call