Abstract

A series of environmentally-friendly bagasse pith cellulose-based adsorbents were prepared in an attempt to retain Cu2+ and SO42− from aqueous solutions. The proof of ion adsorption on the biosorbents was identified from Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy-scanning electron microscope. The adsorption capacities were highly dependent on pH and the maximum uptakes of both ions were obtained at pH 5. An increase of solution temperature resulted in decreasing Cu2+ removal but enhancing SO42− adsorption. The kinetic studies showed that the adsorptions of copper and sulfate ions followed the pseudo-second-order kinetics. The analysis of isotherm data indicated that the Langmuir and Freundlich models were in good agreement with the sorptions of Cu2+ and SO42−, respectively. The proportion of carboxylate cellulose and quaternary ammonium-functionalized cellulose in biosorbents influenced on adsorption capacity of the above ions. The adsorption mechanism was mainly governed by ion exchange, complexation and electrostatic association.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.