Abstract

BackgroundPlant lignocellulosic biomass can be a source of fermentable sugars for the production of second generation biofuels and biochemicals. The recalcitrance of this plant material is one of the major obstacles in its conversion into sugars. Biomass is primarily composed of secondary cell walls, which is made of cellulose, hemicelluloses and lignin. Xylan, a hemicellulose, binds to the cellulose microfibril and is hypothesised to form an interface between lignin and cellulose. Both softwood and hardwood xylan carry glucuronic acid side branches. As xylan branching may be important for biomass recalcitrance and softwood is an abundant, non-food competing, source of biomass it is important to investigate how conifer xylan is synthesised.ResultsHere, we show using Arabidopsis gux mutant biomass that removal of glucuronosyl substitutions of xylan can allow 30% more glucose and over 700% more xylose to be released during saccharification. Ethanol yields obtained through enzymatic saccharification and fermentation of gux biomass were double those obtained for non-mutant material. Our analysis of additional xylan branching mutants demonstrates that absence of GlcA is unique in conferring the reduced recalcitrance phenotype. As in hardwoods, conifer xylan is branched with GlcA. We use transcriptomic analysis to identify conifer enzymes that might be responsible for addition of GlcA branches onto xylan in industrially important softwood. Using a combination of in vitro and in vivo activity assays, we demonstrate that a white spruce (Picea glauca) gene, PgGUX, encodes an active glucuronosyl transferase. Glucuronic acid introduced by PgGUX reduces the sugar release of Arabidopsis gux mutant biomass to wild-type levels indicating that it can fulfil the same biological function as native glucuronosylation.ConclusionRemoval of glucuronic acid from xylan results in the largest increase in release of fermentable sugars from Arabidopsis plants that grow to the wild-type size. Additionally, plant material used in this work did not undergo any chemical pretreatment, and thus increased monosaccharide release from gux biomass can be achieved without the use of environmentally hazardous chemical pretreatment procedures. Therefore, the identification of a gymnosperm enzyme, likely to be responsible for softwood xylan glucuronosylation, provides a mutagenesis target for genetically improved forestry trees.

Highlights

  • Plant lignocellulosic biomass can be a source of fermentable sugars for the production of second generation biofuels and biochemicals

  • Cellulose is naturally resistant to enzymatic attack, but in the cell wall it is protected by hemicelluloses and lignin, which are removed in pretreatment processes to allow enzymatic saccharification of the cellulose [6]

  • Efficient saccharification without chemical pretreatment opens the possibility of using sugars from recalcitrant biomass such as wood as a feedstock for in vitro protein production, since toxic inhibitors are avoided with this pretreatment

Read more

Summary

Introduction

Plant lignocellulosic biomass can be a source of fermentable sugars for the production of second generation biofuels and biochemicals. The recalcitrance of this plant material is one of the major obstacles in its con‐ version into sugars. A hemicellulose, binds to the cellulose microfibril and is hypothesised to form an interface between lignin and cellulose Both softwood and hardwood xylan carry glucuronic acid side branches. Increasing the yield of sugars from both hemicelluloses and cellulose in the cell wall is important for the development of economic biorefineries and for use of improved plant biomass as an animal feed. Experiments using genetically modified plants and studies of genetic diversity have implicated lignin as one of the main cell wall components that influence digestibility [7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call