Abstract
Formaldehyde is a major indoor air pollutant and can cause serious health disorders in residents. This work reports the removal of formaldehyde from gas streams via alumina-pellet-filled dielectric barrier discharge plasmas at atmospheric pressure and 70 °C. With a feed gas mixture of 140 ppm HCHO, 21.0% O2, 1.0% H2O in N2, ∼92% of formaldehyde can be effectively destructed at GHSV (gas flow volume per hour per discharge volume) of 16 500 h−1 and Ein = 108 J l−1. An increase in the specific surface area of the alumina pellets enhances the HCHO removal, and this indicates that the adsorbed HCHO species may have a lower C–H bond breakage energy. Based on an examination of the influence of gas composition on the removal efficiency, the primary destruction pathways, besides the reactions initiated by discharge-generated radicals, such as O, H, OH and HO2, may include the consecutive dissociations of HCHO molecules and HCO radicals through their collisions with vibrationally- and electronically-excited metastable N2 species. The increase of O2 content in the inlet gas stream is able to diminish the CO production and to promote the formation of CO2 via O-atom or HO2-radical involved reactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have