Abstract

The biosorption properties of dead sulfate reducing bacteria (SRB) for the removal of Cu(II) and Fe(III) from aqueous solutions was studied. The effects of the biosorbent concentration, the initial pH value and the temperature on the biosorption of Cu(II) and Fe(III) by the SRB were investigated. FTIR analysis verified that the hydroxyl, carbonyl and amine functional groups of the SRB biosorbent were involved in the biosorption process. For both Cu(II) and Fe(III), an increase in the SRB biosorbent concentration resulted in an increase in the removal percentage but a decrease in the amount of specific metal biosorption. The maximum specific metal biosorption was 93.25 mg·g−1 at pH 4.5 for Cu(II) and 88.29 mg·g−1 at pH 3.5 for Fe(III). The temperature did not have a significant effect on biosorption. In a binary metal system, the specific biosorption capacity for the target metal decreased when another metal ion was added. For both the single metal and binary metal systems, the biosorption of Cu(II) and Fe(III) onto a SRB biosorbent was better represented by a Langmuir model than by a Freundlich model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.