Abstract
AbstractA weak acid acrylic resin was used as an adsorbent for the investigation of Basic Blue 3 (BB3) adsorption kinetics, isotherms, and thermodynamic parameters. Batch adsorption studies were carried out to evaluate the effect of pH, contact time, initial concentration (28–100 mg/g), adsorbent dose (0.05–0.3 g), and temperature (290–323 K) on the removal of BB3. The adsorption equilibrium data were analyzed by the Langmuir, Temkin, and Freundlich isotherm models, with the best fitting being the first one. The adsorption capacity (Qo) increased with increasing initial dye concentration, adsorbent dose, and temperature; the highest maximum Qo (59.53 mg/g) was obtained at 323 K. Pseudo‐first‐order and pseudo‐second‐order kinetic models and intraparticle diffusion models were used to analyze the kinetic data; good agreement between the experimental and calculated amounts of dye adsorbed at equilibrium were obtained for the pseudo‐second‐order kinetic models for the entire investigated concentrations domain. Various thermodynamic parameters, such as standard enthalpy of adsorption (ΔHo = 88.817 kJ/mol), standard entropy of adsorption (ΔSo = 0.307 kJ mol−1 K−1), and Gibbs free energy (ΔGo < 0, for all temperatures investigated), were evaluated and revealed that the adsorption process was endothermic and favorable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.