Abstract

The present study is focused on continuing the development, improvement and optimisation of a new hybrid separation method – membrane-assisted gas absorption, which is designed for processing methane-containing gas mixtures, namely for the removal of acid gases. The second part is devoted to the design of absorbent solutions and their application in the proposed technology in order to improve the efficiency of acid gas removal and reduce hydrocarbon losses. Absorbents of acid gases based on aqueous solutions of methyldiethanolamine containing ionic liquid [M2E2A][Gly] have been proposed and investigated. As a result of the study, the optimal absorbent composition for further separation tests in a membrane-assisted gas absorption unit was determined. The efficiency of the process was investigated on the example of 8-component gas mixture containing methane, ethane, propane, n-butane, nitrogen, carbon dioxide, hydrogen sulfide and xenon. The membrane-assisted gas absorption unit demonstrated high efficiency of acid gas removal and high hydrocarbon recovery. The final efficiency of the investigated system with the new absorbent was up to 99 % for acid gas removal with hydrocarbon losses of up to 1 % at maximum capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.