Abstract

The removal of Acid Black 1 (AB1) and Basic Red 2 (BR2) from aqueous solutions via an electrocoagulation (EC)/Moringa oleifera seeds (MOS) adsorption coupling process by using aluminum and stainless steel electrode in a batch reactor is described in this study. The influences of the operational parameters, i.e. current density, MOS dosage, and dye initial concentration, on degree of color removal were studied, and the unit energy demand, the unit electrode material demand, and the charge loading were calculated and discussed. The amounts of adsorbent and energy consumption were considered as main criteria of process evaluation, and ideal conditions were chosen. The addition of an appropriate MOS dosage (0.6 g/L for AB1 and 5 g/L for BR2) resulted in faster decolorization of dyes especially at lower current densities and was simultaneously accompanied by a significant reduction in contact time compared to the conventional simple EC process. The coupling process achieved degree of removals above 99.3% and 94% for AB1 and BR2, respectively. The EC/MOS coupling technique could be recommended to replace the conventional simple EC because of its high degree of removal, short contact time, and low energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.