Abstract
Let L be a homogeneous left-invariant differential operator on a Carnot group. Assume that both L and Lt are hypoelliptic. We study the removable sets for L-solutions. We give precise conditions in terms of the Carnot- Caratheodory Hausdorff dimension for the removability for L-solutions under several auxiliary integrability or regularity hypotheses. In some cases, our criteria are sharp on the level of the relevant Hausdorff measure. One of the main ingredients in our proof is the use of novel local self-similar tilings in Carnot groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.