Abstract
This study presents a comparative analysis of several commercial removable materials for radioactive decontamination of steel surfaces using 241Am as representative radionuclide. The selection criteria of removable coatings for this study included a history of application, commercial availability, easy handling conditions and different composition and formulation. Carbon steel and stainless steel coupons were utilized as common industrial materials, and the experimental series were expanded to include the rusting treatment of these surfaces as it is common for decommissioned nuclear facilities. Radionuclide 241Am was deposited on the coupon surfaces and used to evaluate decontamination efficiency of the removable coatings, which were pre-screened for the ease of application and removal from the surface. Selected coatings were characterized with Fourier-transform infrared spectroscopy and thermogravimetric analysis, decontamination efficiencies for different types of steel surfaces, and potential enhancement of the removal efficiencies of the select removable coatings via amendment with EDTA. Across all the coatings, decontamination efficiencies for stainless steel (both pristine and with oxidizing treatment) were higher than for pristine carbon steel, which in turn were higher than for rusted carbon steel. Amendment with EDTA improved removal efficiency of a removable coating. CC Strip coating exhibited easy handling and high decontamination efficiency, (up to 97% when EDTA-amended), but its drying time was the longest, and thermal analysis indicated higher release of energy during thermal decomposition compared to the other coatings. Hydrogel-based DeconGel coating, even though not the easiest in handling among the rest of materials, exhibited high decontamination efficiency, efficient drying at the ambient temperature leading to the loss of about 80wt% due to solvent evaporation, and extremely low heat released during thermal decomposition; therefore, it is considered a preferable choice for the considered factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.