Abstract

This article presents experimental results obtained by the investigation of the efficiency of radioactive decontamination of a metal surface with alkyd and epoxy–urethane coating systems, which are used for the painting of military equipment. During the evaluation of the efficiency of decontamination, the impact of contaminants on the coating was not examined but the amount of contaminants residual after decontamination was, and was determined by activity measurements of the surface. The samples for testing were painted aluminum plates contaminated by liquid solutions of radioactive isotopes 60Co, 133Ba, 152Eu and 241Am (A=12297.91 Bq/ml). Decontamination of contaminated samples was performed with 0.5% detergent solution on the basis of synthetic surfactants. The activity measurements of samples were conducted using gamma spectroscopy system with a high-resolution high-purity germanium (HPGe) detector of relative efficiency of 50% at 60Co (1.33 MeV). The degree of removal of the radioactivity on the samples was observed as an indicator of the efficiency of decontamination. A comparison of the results is presented in relation to the retention time of the contamination on the surface coating, which is an important factor for the efficiency of decontamination. The samples with an alkyd coating system showed better efficiency of decontamination than the samples with the epoxy–urethane coating system, although the coatings based on epoxy and urethane resin were superior in relation to the alkyd in terms of protection, decorative characteristics and chemical resistance. The difference in the efficiency of decontamination for the examined coatings increases almost linearly in relation to the retention time of the contaminants in the coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call