Abstract
According to the UN Population Reference Bureau, 1.4 billion more people will have settled in urban areas by 2030. One of the key environmental effects of rapid urbanization is the urban heat island (UHI) effect. Understanding the mechanism of surface UHIs associated with land-use/land-cover (LULC) change patterns is important for improving the ecology and sustainability of cities. In this article, time series Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) data were used to extract LULC data and land surface temperature (LST) data for the city of Jinan, China, from 1987 to 2011, a period during which the city experienced rapid urbanization. With the aid of a geographical information system (GIS) and remote sensing (RS) approach, the changes in this urban area’s LULC were explored, and the impact of these changes on the spatiotemporal patterns and underlying driving forces of the surface UHI effect were further quantitatively characterized. The results show that significant changes in land use and land cover occurred over the study period, with loss of farmland, forest, and shrub vegetation to urban use, leading to spatial growth of impervious surfaces. Consequently, the land surface characteristics and spatiotemporal patterns of the UHI have changed drastically. According to the seasonal and inter-annual variations in intensity of UHIs, mean differences in UHI intensity between city centre, peri-urban, and nearby rural areas were stronger during summer and spring and weaker during winter and autumn. Spatially, there were significant LST gradients from the city centre to surrounding rural areas. The city centre exhibited higher LSTs and remarkable variation in LSTs, while the surrounding rural areas exhibited lower LSTs and lower variation in LSTs. Moreover, the analysis of LSTs and indices showed that great differences of temperature even existed in a LULC type except for variations between different LULC types. In addition, a local-level analysis revealed that the intensity of the UHI effect is proportional to the size of the urban area, the population density, and the frequent occurrence of certain activities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have