Abstract

In recent years, with the rapid advance of wireless mobile networks, secure and efficient authentication mechanisms that can operate over insecure wireless channels have become increasingly essential. To improve the efficiency in the energy-limited mobile devices, many authentication schemes using elliptic curve cryptography (ECC) have been presented. However, these schemes are still inefficient in terms of computation cost and communication overhead. Moreover, they suffer from various attacks, making them impractical due to their inherent design. To address their weaknesses, we propose a more efficient ID-based authentication scheme on ECC for mobile client–server environments with considering security requirements. The proposed scheme not only provides mutual authentication but also achieves session key agreement between the client and the server. Through a rigorous formal security proof under random oracle model, it has been indicated that the proposed protocol is secure against security threats. The informal security analysis shows that our scheme can resist well-known attacks and provides user anonymity. Performance analysis and comparison results demonstrate that our scheme outperforms the related competitive works and is more suitable for practical application in mobile client–server environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.