Abstract

The Northeast Pacific (NEP) had two record-breaking marine heatwave events in the winters of 2013–2015 and summer of 2019, which had a detrimental impact on the fisheries, marine ecosystems, and climate in North America. Here, we investigated the cause of sea surface temperature (SST) variability in NEP during late spring–summer of 1981–2020. The regression circulation anomalies to the principal component of leading empirical orthogonal function mode suggested that the warm NEP SST were characterized by a cyclonic circulation anomaly in the midlatitude North Pacific and a warming SST center in the Gulf of Alaska. We noted that this cyclonic circulation anomaly, attributable to a barotropic atmospheric wave originating from the tropical central Pacific (CP) in the preceding spring, reduced the surface heat flux loss from the ocean to the atmosphere in the NEP and led to the warm SST anomalies in summer. This finding was confirmed by not only empirical diagnosis but also long-term numerical simulations forced by the observed SST perturbations in the tropical CP. Our results highlight the role of the tropical CP SST in driving the summertime North Pacific SST variability through the atmospheric bridge in recent decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call