Abstract
To deal with water resources crisis caused by climate change and intensified human activities, the Hetao Irrigation District of Inner Mongolia in North China has been experiencing rehabilitation for water-saving since 1999. This has significantly changed its regional hydrological cycle and thus water use patterns over different land use types. In this paper, Surface Energy Balance Algorithm for Land (SEBAL) model fed with MODIS data was applied in Hetao area from 2000 to 2010 to examine the spatial and temporal patterns of evapotranspiration (ET). The SEBAL estimated ET agreed well with that from other methods in the study area. The results indicate that inter-annual variability in ET over agricultural land, water body, woodland and irrigated grassland are primarily explained by the variation of reference ET. So it is with the seasonal variability in agricultural land ET on monthly basis. However, the inter-annual variations of ET over sandy land, Gobi desert and mountain areas are mainly controlled by precipitation. Over the study period, a reduction in river water diversion for irrigation has not reduced the agricultural land ET, indicating no significant impact on agricultural production. But ET over the non-irrigated grassland tends to decrease, which was likely caused by declining groundwater table in recent years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.