Abstract
Fractional vegetation cover (FVC) is an important indicator of mountain ecosystem status. A study on the seasonal changes of FVC can be beneficial for regional eco-environmental security, which contributes to the assessment of mountain ecosystem recovery and supports mountain forest planning and landscape reconstruction around megacities, for example, Beijing, China. Remote sensing has been demonstrated to be one of the most powerful and feasible tools for the investigation of mountain vegetation. However, topographic and atmospheric effects can produce enormous errors in the quantitative retrieval of FVC data from satellite images of mountainous areas. Moreover, the most commonly used analysis approach for assessing FVC seasonal fluctuations is based on per-pixel analysis regardless of the spatial context, which results in pixel-based FVC values that are feasible for landscape and ecosystem applications. To solve these problems, we proposed a new method that incorporates the use of a revised physically based (RPB) model to correct both atmospheric and terrain-caused illumination effects on Landsat images, an improved vegetation index (VI)-based technique for estimating the FVC, and an adaptive mean shift approach for object-based FVC segmentation. An array of metrics for segmented FVC analyses, including a variety of area metrics, patch metrics, shape metrics and diversity metrics, was generated. On the basis of the individual segmented FVC values and landscape metrics from multiple images of different dates, remote sensing of the seasonal variability of FVC was conducted over the mountainous area of Beijing, China. The experimental results indicate that (a) the mean value of the RPB–NDVI in all seasons was increased by approximately 10% compared with that of the atmospheric correction-NDVI; (b) a strong consistency was demonstrated between ground-based FVC observations and FVC estimated through remote sensing technology (R2=0.8527, RMSE=0.0851); and (c) seasonal changes in the landscape characteristics existed, and the landscape diversity reached its maximum in May and June in the study area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.