Abstract

Pulse ecological events have major impacts on regional and global biogeochemical cycles, potentially inducing a vast set of cascading ecological effects. This study analyzes the widespread reproductive event of bamboo (Melocanna baccifera) that occurred in the Arakan Mountains (Southeast Asia) from 2005 to 2011, and investigates the possible relationship between massive fuel loading due to bamboo synchronous mortality over large areas and wildfire regime. Multiple remote sensing data products are used to map the areal extent of the bamboo-dominated forest. MODIS NDVI time series are then analyzed to detect the spatiotemporal patterns of the reproductive event. Finally, MODIS Active Fire and Burned Area Products are used to investigate the distribution and extension of wildfires before and after the reproductive event. Bamboo dominates about 62,000 km2 of forest in Arakan. Over 65% of the region shows evidence of synchronous bamboo flowering, fruiting, and mortality over large areas, with wave-like spatiotemporal dynamics. A significant change in the regime of wildfires is observed, with total burned area doubling in the bamboo-dominated forest area and reaching almost 16,000 km2. Wildfires also severely affect the remnant patches of the evergreen forest adjacent to the bamboo forest. These results demonstrate a clear interconnection between the 2005–2011 bamboo reproductive event and the wildfires spreading in the region, with potential relevant socio-economic and environmental impacts.

Highlights

  • The important role of pulse ecological events, defined as infrequent, large-magnitude, and short-duration events of increased resource availability, on regional and global biogeochemical cycles has been increasingly acknowledged in recent literature [1]

  • This study aims at analyzing time series of satellite data and derived burned area/active fire products in the Arakan region to assess the spatial and temporal patterns of the bamboo reproductive event, and to investigate possible impacts on wildfire regime

  • Despite the above-mentioned potential sources of inaccuracy recommending caution in the interpretation of the final mapping products, especially for local scale analyses, this study demonstrates consistent spatial and temporal patterns in different satellite data products (i.e., Landsat TM/ETM+, MODIS Normalized Difference Vegetation Index (NDVI), MODIS Burned Area, and MODIS Active Fire), all supporting the large extension of the bamboo reproductive event and a clear change in wildfire regime, and provides the first regional scale assessment for future land policy planning

Read more

Summary

Introduction

The important role of pulse ecological events, defined as infrequent, large-magnitude, and short-duration events of increased resource availability, on regional and global biogeochemical cycles has been increasingly acknowledged in recent literature [1]. In this context, mast flowering, the massive and synchronized flowering and fruiting of a plant species across large areas, can be considered a typical pulse event, potentially inducing a vast set of cascading ecological effects [2]. Most masting plant species are iteroparous (i.e., they flower several times during their life cycle), and have a relatively short intermast interval (3–7 years) [3]. These bamboo species are characterized by aggressive rhizomatous growth and develop large clonal clumps that may cover hundreds of square meters [6].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call