Abstract

Remote sensing with time series data offers considerable potential in the trajectory of post forest fire dynamics beyond the current monitoring of structural attributes that are displayed in the post-fire area. Many studies have addressed this topic by using time series remote sensing indices; however, this approach has sometimes been demonstrated as an unrealistic and biased representation of the post-fire forest patterns due to the saturation issues of vegetation indices. These saturation issues then lead to an underestimation of the forest successional stages and an overestimation of the forest recovery rate. This paper aims to develop a framework for trajectory of the post-fire forest patterns in the Siberian boreal larch forest (Larix sibirica) with the synergistic use of different remote sensing based vegetation-cover indicators derived from the Landsat time series and the WorldView-2 images. A time-series of the forest recovery index (FRI) and fractional vegetation cover (FVC) has been analyzed to estimate the rates of forest regeneration and vegetation recovery across different burn severity levels in the Siberian larch forest. The results showed that the FRI method can be used to observe the regrowth of the larch forest from the tenth year after the fire overlapping with the period of significant increase in the sapling stem volume. The post-fire larch forest canopy can fully recover to the pre-fire condition with respect to the magnitude of the FRI values after 30–47 years where the highest regeneration rate was observed in the moderate burn severity areas followed by the low and high burn severity. On the other hand, the FVC method was positively correlated with burn severity and more sensitive for evaluating the early stages of the forest succession in which the FVC dramatically increases after 5–6 years after the fire. The significant growth of FVC was accentuated by the maximum emergence of the sapling density as well as the rapid growth of herbaceous plants, grasses, shrubs, and shade-intolerant trees immediately after the fire, which could not be evaluated using the FRI. Both time series of the FRI and the FVC are valuable tools for determining the dominant stages of the post-fire larch forest succession in order to understand the relationships between fire disturbance and natural cycles of the boreal larch forest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.