Abstract

The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. Its persistence is considered to depend on near‐surface permafrost, and thus, forecast warming over the 21st century and consequent degradation of near‐surface permafrost is expected to affect the larch forest in Siberia. However, predictions of these effects vary greatly, and many uncertainties remain about land – atmosphere interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo‐hydrology, although it does not consider many processes those are considered to affect productivity response to a changing climate (e.g., nitrogen limitation, waterlogged soil, heat stress, and change in species composition). The model showed that, under climatic conditions predicted under gradual and rapid warming, the annual net primary production of larch increased about 2 and 3 times, respectively, by the end of the 21st century compared with that in the previous century. Soil water content during the larch‐growing season showed no obvious trend, even when surface permafrost was allowed to decay and result in subsurface runoff. A sensitivity test showed that the forecast temperature and precipitation trends extended larch leafing days and reduced water shortages during the growing season, thereby increasing productivity. The integrated model also satisfactorily reconstructed latitudinal gradients in permafrost presence, soil moisture, tree leaf area index, and biomass over the entire larch‐dominated area in eastern Siberia. Projected changes to ecosystem hydrology and larch productivity at this geographical scale were consistent with those from site‐level simulation. This study reduces the uncertainty surrounding the impact of current climate trends on this globally important carbon reservoir, and it demonstrates the need to consider complex ecological processes to make accurate predictions.

Highlights

  • We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends

  • This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century

  • A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity

Read more

Summary

Introduction

佐藤永 1、岩花剛 2、太田岳史 3 1 海洋研究開発機構 地球表層物質循環研究分野 Endurance of larch forest ecosystems in eastern Siberia under warming trends Hisashi SATO1, Go IWAHANA2 and Takeshi OHTA3 1Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2 International Arctic Research Center, University of Alaska Fairbanks

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.