Abstract
Remote Raman spectroscopy is a technique that can detect and identify different target molecules through Raman vibrational modes from a remote distance. However, the current remote Raman technique is restricted by poor detection sensitivity, and it is still extremely challenging for trace explosive detection. Here, in order to achieve trace explosive detection from a remote distance, we innovatively propose two enhanced Raman spectroscopy methods by using a plasmonic spray and a laser beam focusing/Raman signal collecting instrument. In brief, a facile convex lens can converge the laser beam and collect Raman scattering signals, and a plasmonic spray can be used for surface-enhanced Raman scattering. Under the combination of the above enhancement methods, we achieve remote Raman detection of a variety of trace explosives with a concentration of ∼1 μg/cm2 from a distance of 30 m. These novel methods demonstrate a simple approach that significantly improves the capability of remote detection of trace chemicals for further applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.