Abstract

Exfoliated molybdenum disulfide (MoS2) is shown to chemically oxidize in a layered manner upon exposure to a remote O2 plasma. X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and atomic force microscopy (AFM) are employed to characterize the surface chemistry, structure, and topography of the oxidation process and indicate that the oxidation mainly occurs on the topmost layer without altering the chemical composition of underlying layer. The formation of S-O bonds upon short, remote plasma exposure pins the surface Fermi level to the conduction band edge, while the MoOx formation at high temperature modulates the Fermi level toward the valence band through band alignment. A uniform coverage of monolayer amorphous MoO3 is obtained after 5 min or longer remote O2 plasma exposure at 200 °C, and the MoO3 can be completely removed by annealing at 500 °C, leaving a clean ordered MoS2 lattice structure as verified by XPS, LEED, AFM, and scanning tunneling microscopy. This work shows that a remote O2 plasma can be useful for both surface functionalization and a controlled thinning method for MoS2 device fabrication processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.