Abstract

Remote homology detection is the problem of detecting homology in cases of low sequence similarity. It is a hard computational problem with no approach that works well in all cases. We present a method for detecting remote homology that is based on the presence of discrete sequence motifs. The motif content of a pair of sequences is used to define a similarity that is used as a kernel for a Support Vector Machine (SVM) classifier. We test the method on two remote homology detection tasks: prediction of a previously unseen SCOP family and prediction of an enzyme class given other enzymes that have a similar function on other substrates. We find that it performs significantly better than an SVM method that uses BLAST or Smith-Waterman similarity scores as features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.