Abstract

Remote ischemic conditioning (RIC) displays a cardioprotective role in acute myocardial infarction (AMI). Since interruption of blood vessel is not an essential trigger of remote cardioprotection, tissue compression may play a prominent part in the effect. The purpose of this study was to confirm the protective effect of tissue compression on AMI and the underlying mechanisms. Rat model of AMI was induced by ligation of the left anterior descending coronary artery. Remote cyclic compression (RCC) on forelimb was applied to AMI rats for 3days after the operation. RCC postconditioning displayed cardioprotective effects against AMI injury by limiting infarct size, alleviating cardiac dysfunction, and suppressing cardiomyocyte apoptosis. In addition, RCC postconditioning induced myocardial autophagy as evidenced by increased LC3-II and Beclin-1 and reduced mTOR levels. Furthermore, RCC treatment upregulated AMPK phosphorylation in the context of AMI hearts. AMPK inhibitor Compound C administration markedly abrogated RCC-mediated cardioprotective effect, as evidenced by decreased infarct size and cardiac function. Our results indicated that RCC postconditioning could attenuate AMI injury through inhibiting apoptosis and promoting autophagy via AMPK signaling pathway. The research provided a novel perspective for studying the cardioprotection of RIC and possible therapeutic strategy for managing AMI injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.