Abstract

Simple SummaryMeasurement of the nociceptive threshold (NT) is widely used in the study of pain and its alleviation. This records the intensity of a stimulus that causes pain to the test subject. The end point of the test that indicates when the subject experiences pain, the NT, is a behavioural escape response. Detection of a reliable and repeatable response depends on the animal behaving normally throughout testing. Restraint and an unfamiliar environment may prevent the animal from displaying normal behaviour and impede acquisition of robust NTs. Remotely controlled testing enables NT data to be collected from unrestrained animals behaving normally. Development of a remote controlled system for measurement of thermal and mechanical NTs in a range of large animal species is described. Normal “baseline” thermal and mechanical NTs from untreated animals are reported. This information can be used to improve both the welfare of the animals under investigation and the quality of the data collected. Remote controlled systems are now in use worldwide in both the study of pain physiology and in developing new pharmaceutical and non-drug-based methods of pain relief.Nociceptive threshold (NT) testing is widely used for the study of pain and its alleviation. The end point is a normal behavioural response, which may be affected by restraint or unfamiliar surroundings, leading to erroneous data. Remotely controlled thermal and mechanical NT testing systems were developed to allow free movement during testing and were evaluated in cats, dogs, sheep, horses and camels. Thermal threshold (TT) testing incorporated a heater and temperature sensor held against the animal’s shaved skin. Mechanical threshold (MT) testing incorporated a pneumatic actuator attached to a limb containing a 1–2 mm radiused pin pushed against the skin. Both stimuli were driven from battery powered control units attached on the animal’s back, controlled remotely via infra-red radiation from a handheld component. Threshold reading was held automatically and displayed digitally on the unit. The system was failsafe with a safety cut-out at a preset temperature or force as appropriate. The animals accepted the equipment and behaved normally in their home environment, enabling recording of reproducible TT (38.5–49.8 °C) and MT (2.7–10.1 N); precise values depended on the species, the individual and the stimulus characteristics. Remote controlled NT threshold testing appears to be a viable refinement for pain research.

Highlights

  • Nociceptive threshold (NT) testing is widely used in studies of pain, analgesia, hyperalgesia and allodynia

  • The equipment was miniaturized so that the circuit board and batteries could be carried by the cat on a 50 cm wide back pack positioned on the dorsal thorax

  • Horses and the was aa limb pressure contact was assured by careful adjustment of the elastic strap

Read more

Summary

Introduction

Nociceptive threshold (NT) testing is widely used in studies of pain, analgesia, hyperalgesia and allodynia. The greater size of these species enables the equipment supplying the stimulus to be attached to the animal, for which rodents are too small Remote control of this equipment without restraint or close proximity of the tester allows the animal to display natural behaviour. Mechanical NT testing has commonly been carried out in these larger species by exerting noxious pressure from a blunt ended pin pushed onto the surface of a limb [11,12,13] These systems have all been driven by a variously sized and often noisy control box, again necessitating restraint in stocks. This report describes the development and early validation of remote controlled systems for thermal and mechanical NT testing in a number of large (non-rodent) animal species. Some of the data were presented at the World Congress of Veterinary Anaesthesia in 2006 [14] and to the Association of Veterinary Anaesthetists in 2008 [15]

Animals
Thermal system
Remote
Heating
Mechanical System
Data Analysis
Thermal System
Comparison with Wired System
Horses
Camels
Discussion
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call