Abstract
DnaA protein, a member of the AAA+ (ATPase associated with various cellular activities) family, initiates DNA synthesis at the chromosomal origin of replication (oriC) and regulates the transcription of several genes, including its own. The assembly of DnaA complexes at chromosomal recognition sequences is affected by the tight binding of ATP or ADP by DnaA. DnaA with a point mutation in its membrane-binding amphipathic helix, DnaA(L366K), previously described for its ability to support growth in cells with altered phospholipid content, has biochemical characteristics similar to those of the wild-type protein. Yet DnaA(L366K) fails to initiate in vitro or in vivo replication from oriC. We found here, through in vitro dimethyl sulfate footprinting and gel mobility shift assays, that DnaA(L366K) in either nucleotide state was unable to assemble into productive prereplication complexes. In contrast, at the dnaA promoter, both the ATP and the ADP form of DnaA(L366K) generated active nucleoprotein complexes that efficiently repressed transcription in a manner similar to wild-type ATP-DnaA. Thus, it appears that unlike wild-type DnaA protein DnaA(L366K) can adopt architectures that are independent of its bound nucleotide, and instead the locus determines the functionality of the higher order DnaA(L366K)-DNA complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.