Abstract

BackgroundThe Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency.ResultsTo test whether Tol2 transposons integrated in the Xenopus tropicalis genome are substrates for remobilization, we injected in vitro transcribed Tol2 mRNA into one-cell embryos harbouring a single copy of a Tol2 transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single Tol2 transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the Tol2 transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis.ConclusionsIn this study, we demonstrate that single copy Tol2 transposons integrated into the Xenopus tropicalis genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.

Highlights

  • The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another

  • Genomic DNA prepared from embryos 10M-3 and 12M-2 harboured remobilization events of the Tol2 transposon on the same scaffold as the parental locus (the 10M line has an integration on scaffold 246 that maps to the long arm of chromosome 8 (Figure 2b); and the 12M F1 female frog (12M2) used in this experiment harbours an integration on scaffold 98)

  • Tol2 transposons stably integrated into the Xenopus tropicalis genome are substrates for remobilization Transposon transgenesis techniques offer several advantages over other techniques for manipulating the frog genome

Read more

Summary

Introduction

The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Transposons are naturally occurring mobile genetic elements and have been used as tools to experimentally modify the genomes of a wide range of model organisms. Used extensively in insects and plants for decades, recent advances in transposon-based technologies have expanded their use to vertebrate systems. DNA-based ‘cut-and-paste’ transposon systems have been adapted to provide efficient transgenesis tools that can stably integrate an exogenous cargo into the genome without incorporation of plasmid vector sequences. PiggyBac was used to non-virally integrate key developmental genes to reprogram induced pluripotent stem (iPS) cell lines [21,22]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call