Abstract

ObjectiveThis study investigates the potential of a novel guided tissue regeneration strategy, using fully demineralized dentin infiltrated with silica and hydroxyapatite (HA) nanoparticles (NPs), to remineralize dentin collagen that is completely devoid of native hydroxyapatite. MethodsDentin blocks were fully demineralized with 4N formic acid and subsequently infiltrated with silica and HA NPs. The remineralizing potential of infiltrated dentin was assessed following a twelve week exposure to an artificial saliva solution by means of TEM, EDS and micro-CT. Measurements were taken at baseline and repeated at regular intervals for the duration of the study to quantify the P and Ca levels, the mineral volume percentage and mineral separation of the infiltrated dentin specimens compared to sound dentin and non-infiltrated controls. ResultsInfiltration of demineralized dentin with nano-HA restored up to 55% of the P and Ca levels at baseline. A local increase in the concentration of calcium phosphate compounds over a period of twelve weeks resulted in a higher concentration in P and Ca levels within the infiltrated specimens when compared to the non-infiltrated controls. Remineralization of demineralized dentin with silica NPs by immersion in artificial saliva was the most effective strategy, restoring 20% of the P levels of sound dentin. Micro-CT data showed a 16% recovery of the mineral volume in dentin infiltrated with silica NPs and a significant decrease in the mineral separation to levels comparable to sound dentin. SignificanceDemineralized dentin infiltrated with silica NPs appears to encourage heterogeneous mineralization of the dentin collagen matrix following exposure to an artificial saliva solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call