Abstract
Aniline has become a common groundwater contaminant due to its wide use as a raw material in agriculture and pharmaceutical products. The current technologies for in situ remediation of aniline in groundwater are limited by the strains deficient in bacterial species, limited oxygen supply, excessive waste gas load and cost. Accordingly, we conducted a laboratory sand tank experiment to remediate groundwater contaminated with aniline by combining circulated groundwater electrolysis and in-well Rhizobium borbori, which was isolated from activated sludge. The results of the experiment indicated that the optimum concentration of aniline for Rhizobium borbori is about 5 mg/L, beyond which the maximum cell density and the highest specific growth rate decreases as the aniline concentration increases. The optimized duration for immobilizing the Rhizobium borbori into the bioreactor is 4–5 days. Though the Rhizobium borbori was strongly inhibited by the high-concentration of aniline, the immobilized bioreactor in the 350 mg/L aniline solution successfully formed biofilm. The aniline volatilization had limited influence on the observation of bioremediation performance, and the combination of circulated groundwater and in-well Rhizobium borbori supplied a steady dose of oxygen to the bioreactor efficiently degrading the entire region between the injection and extraction well. In addition, a numerical model for the sand tank remediation experiment was used to estimate the yield coefficient of oxygen to be 0.484 g/g, which indicates the presence of ammonia nitrogen as by-products; accordingly, a smaller wellbore size as well a higher circulation flow rate and intensity of current are recommended to improve the water quality. Despite the positive outcomes and potential of the newly developed technology to degrade subsurface aniline, parallel experiments should be conducted to estimate the environmental risk of the by-products and explore the controlling mechanisms of each component in this comprehensive system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.