Abstract
Since the publication of David Lewis’ Counterfactuals, the standard line on subjunctive conditionals with impossible antecedents (or counterpossibles) has been that they are vacuously true. That is, a conditional of the form ‘If p were the case, q would be the case’ is trivially true whenever the antecedent, p, is impossible. The primary justification is that Lewis’ semantics best approximates the English subjunctive conditional, and that a vacuous treatment of counterpossibles is a consequence of that very elegant theory. Another justification derives from the classical lore than if an impossibility were true, then anything goes. In this paper we defend non-vacuism, the view that counterpossibles are sometimes non-vacuously true and sometimes non-vacuously false. We do so while retaining a Lewisian semantics, which is to say, the approach we favor does not require us to abandon classical logic or a similarity semantics. It does however require us to countenance impossible worlds. An impossible worlds treatment of counterpossibles is suggested (but not defended) by Lewis (Counterfactuals. Blackwell, Oxford, 1973), and developed by Nolan (Notre Dame J Formal Logic 38:325–527, 1997), Kment (Mind 115:261–310, 2006a: Philos Perspect 20:237–302, 2006b), and Vander Laan (In: Jackson F, Priest G (eds) Lewisian themes. Oxford University Press, Oxford, 2004). We follow this tradition, and develop an account of comparative similarity for impossible worlds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.