Abstract

Amide-hydride composite materials, such as LiNH2–LiH and Mg(NH2)2–2LiHcomposites, are promising candidates for hydrogen storage due to the high hydrogen storage capacity and moderate hydrogen storage enthalpies and entropies. However, the hydrogen absorption/desorption kinetics of the amide-based system is too sluggish, and emission of ammonia (NH3) during dehydrogenation also fatally deteriorates the hydrogen storage cyclic ability. In this study, we report that CeF4 shows a remarkable catalytic effect in improving hydrogen storage kinetic and cyclic properties, reducing dehydrogenation temperature, and suppressing emission of NH3 of LiNH2-LiH composite. Mechanism study reveals that the catalysis should be due to the in situ formed F-containing CeFx species during ball milling process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.