Abstract

Large-scale application of hydrogen requires safe, reliable and efficient storage technologies. Among the existing hydrogen storage technologies, cryo-compressed hydrogen (CcH2) storage has the advantages of high hydrogen storage density, low energy consumption and no ortho-para hydrogen conversion. But it still needs higher hydrogen storage pressure when reaching higher hydrogen storage density. In order to reduce hydrogen storage pressure and improve storage density, solid adsorption technology is introduced in CcH2. Activated carbon and metal-organic framework materials (MOFs) are employed as adsorbents in this paper. The gravimetric/volumetric hydrogen storage capacities of different adsorption tanks are studied and compared with the hydrogen storage conditions of 1–55 MPa at 77–298 K. The results show that the hydrogen storage density of CcH2 combined with adsorption is higher than that of pure adsorption hydrogen storage, and the storage pressure is lower than that of pure CcH2 under the same hydrogen storage capacity. And the combination of two hydrogen storage technologies can achieve a high hydrogen storage capacity equivalent to that of liquid hydrogen at a lower pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call