Abstract

We propose to reduce the thermal conductivity of silicon nanowires (SiNWs) by introducing a small hole at the center, i.e., construct a silicon nanotube (SiNT) structure. Our numerical results demonstrate that a very small hole (only 1% reduction in cross section area) can induce a 35% reduction in room temperature thermal conductivity. Moreover, with the same cross section area, thermal conductivity of SiNT is only about 33% of that of SiNW at room temperature. The spatial distribution of vibrational energy reveals that localization modes are concentrated on the inner and outer surfaces of SiNTs. The enhanced surface-to-volume ratio in SiNTs reduces the percentage of delocalized modes, which is believed to be responsible for the reduction of thermal conductivity. Our study suggests SiNT is a promising thermoelectric material with low thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.