Abstract

Thermal conductivity of silicon nanowires (SiNWs) is evaluated using the reverse nonequilibrium molecular dynamics simulation. The Stillinger–Weber (SW) and Tersoff interatomic potentials are employed to simulate thermal conductivity of SiNWs. In this work, the influence of random vacancy defects, axial strain, temperature and length on thermal conductivity and effective mean free path of SiNWs is investigated. It is found that by raising the percent of random vacancy defects, thermal conductivity of SiNWs decreases linearly for the results obtained form SW potential and nonlinearly for those obtained from Tersoff interatomic potential. Dependence of the thermal conductivity on axial strain is also studied. Results show that thermal conductivity increases as compressive strain increases and decreases as tensile strain increases. Influence of temperature is also predicted. It is found that the thermal conductivity of SiNWs decreases with increasing the mean temperature. Most of the simulations are performed for 4 UC×4 UC×40 UC silicon nanowires using ssp boundary condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.