Abstract

We present a side-channel attack based on remanence decay in volatile memory and show how it can be exploited effectively to launch a noninvasive cloning attack against SRAM physically unclonable functions (PUFs) - an important class of PUFs typically proposed as lightweight security primitives, which use existing memory on the underlying device. We validate our approach using SRAM PUFs instantiated on two 65-nm CMOS devices. We discuss countermeasures against our attack and propose the constructive use of remanence decay to improve the cloning resistance of SRAM PUFs. Moreover, as a further contribution of independent interest, we show how to use our evaluation results to significantly improve the performance of the recently proposed TARDIS scheme, which is based on remanence decay in SRAM memory and used as a time-keeping mechanism for low-power clockless devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.