Abstract

In this study, we introduce a novel denoising transformer-based neural network (DTNN) model for predicting the remaining useful life (RUL) of lithium-ion batteries. The proposed DTNN model significantly outperforms traditional machine learning models and other deep learning architectures in terms of accuracy and reliability. Specifically, the DTNN achieved an R2 value of 0.991, a mean absolute percentage error (MAPE) of 0.632%, and an absolute RUL error of 3.2, which are superior to other models such as Random Forest (RF), Decision Trees (DT), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Dual-LSTM, and DeTransformer. These results highlight the efficacy of the DTNN model in providing precise and reliable predictions for battery RUL, making it a promising tool for battery management systems in various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.