Abstract

Estimation of the remaining useful life (RUL) based on the elastic strain energy density using the non-contacting and full-field capabilities of Thermoelastic Stress Analysis (TSA) was applied to E-glass fiber-reinforced polymers (GFRPs) subjected to high-cycle fatigue loading conditions. A quantitative prediction was successfully attained during the material’s intermediate and final fatigue life phases. The initial state of the specimen was used as the reference data for defining a damage parameter that enabled the detection of visually imperceptible subsurface cracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.