Abstract

Currently, dead zones and low sensitivity have hindered the utilization of magnetostrictive sensors. In this paper, a new negative Poisson’s ratio structure inspired by an hourglass is proposed to provide a feasible idea for this problem. The novel negative Poisson’s ratio structure exhibits a high Poisson’s ratio and a high compression resistance. Theoretical studies have demonstrated that the structure’s performance is strongly dependent on four design parameters. The structure is analyzed and tested via finite element analysis simulation by changing the design parameters. This structure’s negative Poisson’s ratio can reach up to −1.004. It possesses a compressive strength of 1.83 kN and an energy absorption capacity of 8.72 J. A magnetostrictive sensor using the proposed negative Poisson’s ratio structure as the base realizes a 271.7 % sensitivity improvement. The problem of dead zones in magnetostrictive sensors can be also solved simultaneously. The proposed structure in this paper provides a feasible solution for further expanding the applications of magnetostrictive sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.