Abstract

Due to the large-scale application of electric vehicles, the remaining service life prediction and health status diagnosis of lithium-ion batteries as their power core is particularly important, and the essence of RUL prediction and SOH diagnosis is the prediction of remaining capacity. Through the aging experiment of cycle charging and discharging of lithium-ion batteries, the health features of experimental data are extracted for the prediction of remaining capacity. In this paper, a deep feature extraction method based on Bilinear CNN combined with CatBoost algorithm based on fractional order method optimization particle swarm optimization, and ant colony optimization algorithm is proposed for battery remaining capacity prediction. Seven groups of health features extracted from ten groups of battery data were used to input them into the optimized CatBoost algorithm for regression prediction. The results show that the proposed model achieves accurate SOH and RUL prediction, the three evaluation indicators MAE, RMSE, and MAPE of SOH are all within 1.7 % and the error rate of RUL is not higher than 1.5 %, and the test of multiple batteries also proves its strong robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call