Abstract

A sensing module composed of a carbon fiber reinforced polymer (CFRP) packaging and an embedded fiber Bragg grating (FBG) sensor is proposed for strain monitoring of wind turbine blades. The sensing unit is designed and manufactured with the aim of maximizing the strain transfer from a CFRP wind blade to the FBG sensor. The performance of the packaged FBG sensors is experimentally investigated through exhaustive aging and fatigue tests. Then, a series of CFRP-packaged FBG sensors is used to monitor a full-scale 56.85 m-long wind blade during flapwise and edgewise fatigue tests over a few million dynamic strain cycles. Results demonstrate that the independent sensing modules provide efficient strain transfer, verifying a longer lifetime and more reliable measurements compared to conventional electrical strain gauges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call