Abstract

The use of deep neural networks for biomedical image analysis requires a sufficient number of labeled datasets. To acquire accurate labels as the gold standard, multiple observers with specific expertise are required for both annotation and proofreading. This process can be time-consuming and labor-intensive, making high-quality, and large-annotated biomedical datasets difficult. To address this problem, we propose a deep active learning framework that enables the active selection of both informative queries and reliable experts. To measure the uncertainty of the unlabeled data, a dropout-based strategy is integrated with a similarity criterion for both data selection and random error elimination. To select the reliable labelers, we adopt an expertise estimator to learn the expertise levels of labelers via offline-testing and online consistency evaluation. The proposed method is applied to classification tasks on two types of medical images including confocal endomicroscopy images and gastrointestinal endoscopic images. The annotations are acquired from multiple labelers with diverse levels of expertise. The experiments demonstrate the efficiency and promising performance of the proposed method compared to a set of baseline methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call