Abstract
The severity of mobility deficits is one of the most critical parameters in the diagnosis and rehabilitation of Parkinson's disease (PD). The current approach for severity evaluation is clinical scaling that relies on a clinician's subjective observations and experience, and the observation in laboratories or clinics may not suffice to reflect the severity of motion deficits as compared to daily living activities. The paper presents an approach to modeling and quantifying the severity of mobility deficits from motion data by using nonintrusive wearable physio-biological sensors. The approach provides a user-specific metric that measures mobility deficits in terms of the quantities of motion primitives that are learned from motion tracking data. The proposed method achieved 99.84% prediction accuracy on laboratory data and 93.95% prediction accuracy on clinical data. This approach presents the potential to supplant traditional observation-based clinical scaling, providing an avenue for real-time feedback to fortify positive progression throughout the course of rehabilitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.