Abstract
Accurate recognition of facial expression is a challenging problem especially from multi-scale and multi orientation face images. In this article, we propose a novel technique called Weber Local Binary Image Cosine Transform (WLBI-CT). WLBI-CT extracts and integrates the frequency components of images obtained through Weber local descriptor and local binary descriptor. These frequency components help in accurate classification of various facial expressions in the challenging domain of multi-scale and multi-orientation facial images. Identification of significant feature set plays a vital role in the success of any facial expression recognition system. Effect of multiple feature sets with varying block sizes has been investigated using different multi-scale images taken from well-known JAFEE, MMI and CK+ datasets. Extensive experimentation has been performed to demonstrate that the proposed technique outperforms the contemporary techniques in terms of recognition rate and computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.