Abstract

In this paper, the problem of reliable controller design for event-triggered singular Markov jump systems with partly known transition probabilities, nonlinear perturbations and actuator faults is studied. To mitigate the burden of data transmissions over network, two event-triggered schemes with different triggering conditions are introduced. The switch law between the two event-triggered schemes is governed by a random variable with Bernoulli distribution. Taking nonlinear perturbations and actuator faults into account, the resulting closed-loop system is converted into a time-delay singular Markov jump system with partly known transition probabilities. Sufficient conditions of stochastically admissible for the resulting closed-loop system are obtained in terms of a group of linear matrix inequalities. The co-design of desirable reliable controller and weighting matrices of event-triggered schemes is presented. Finally, two numerical examples are given to show the effectiveness of the developed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call