Abstract

To overcome the leakage of phase change materials (PCMs) above melting temperature, PCMs are commonly encapsuled by chemically crosslinked networks, which bring the issues of reparability, reprocess-ability and recyclability making for the environment pollution and resource waste. Herein, a reversible aromatic disulfide is adopted to form dynamic epoxy networks which not only encapsulate polyethylene glycol (PEG) as the shape-stabilized PCMs (SSPCMs) but also address the issues about the un-recyclability of traditional SSPCMs. The PEG was well encapsulated and uniformly dispersed in disulfide-based epoxy due to the elaborate molecular design. The obtained SSPCMs (named EXAP2) shows typical solid–solid phase transitions characteristic and thermal reliability with high latent heat value of 82.7 J/g. Besides, the EXAP2 exhibit dynamic performance and can be reprocessed by hot press via the disulfide bonds exchange reaction above topology freezing temperature (Tv). And the reprocessed EXAP2 exhibits close phase change properties with the original sample, implying the reprocessing does not affect the crystalline structure and encapsuling capability of disulfide crosslinked networks. This strategy prove a significant way for fabricating the novel SSPCM with recyclability, reprocessability and reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call