Abstract

The reliability-based design optimization (RBDO) using performance measure approach for problems with correlated input variables requires a transformation from the correlated input random variables into independent standard normal variables. For the transformation with correlated input variables, the two most representative transformations, the Rosenblatt and Nataf transformations, are investigated. The Rosenblatt transformation requires a joint cumulative distribution function (CDF). Thus, the Rosenblatt transformation can be used only if the joint CDF is given or input variables are independent. In the Nataf transformation, the joint CDF is approximated using the Gaussian copula, marginal CDFs, and covariance of the input correlated variables. Using the generated CDF, the correlated input variables are transformed into correlated normal variables and then the correlated normal variables are transformed into independent standard normal variables through a linear transformation. Thus, the Nataf transformation can accurately estimates joint normal and some lognormal CDFs of the input variable that cover broad engineering applications. This paper develops a PMA-based RBDO method for problems with correlated random input variables using the Gaussian copula. Several numerical examples show that the correlated random input variables significantly affect RBDO results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.