Abstract
In RBDO, input uncertainty models such as marginal and joint cumulative distribution functions (CDFs) need to be used. However, only limited data exists in industry applications. Thus, identification of the input uncertainty model is challenging especially when input variables are correlated. Since input random variables, such as fatigue material properties, are correlated in many industrial problems, the joint CDF of correlated input variables needs to be correctly identified from given data. In this paper, a Bayesian method is proposed to identify the marginal and joint CDFs from given data where a copula, which only requires marginal CDFs and correlation parameters, is used to model the joint CDF of input variables. Using simulated data sets, performance of the Bayesian method is tested for different numbers of samples and is compared with the goodness-of-fit (GOF) test. Two examples are used to demonstrate how the Bayesian method is used to identify correct marginal CDFs and copula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.