Abstract
A probabilistic method is presented to estimate the differential settlements of footings on cohesionless soils, considering the uncertainties in both the load and capacity sides of the design equation. A random field approach is employed to characterize the inherent soil variability. This method is first compared to typical limit values from the literature to denote critical combinations of design parameters that can lead to exceedance of tolerable differential settlements. Then, reliability-based design equations are developed for the serviceability limit state (SLS) design of footings on cohesionless soils. The key parameters controlling the SLS are the allowable angular distortion, site variability, and footing spacing. The results are given in a straightforward design format and indicate that currently suggested deformation factors (resistance factors for SLS) equal to 1.0 are likely to be unconservative for most design situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.