Abstract
ARM processors are leaders in embedded systems, delivering high-performance computing, power efficiency, and reduced cost. For this reason, there is a relevant interest for its use in the aerospace industry. However, the use of sub-micron technologies has increased the sensitivity to radiation-induced transient faults. Thus, the mitigation of soft errors has become a major concern. Software-Implemented Hardware Fault Tolerance (SIHFT) techniques are a low-cost way to protect processors against soft errors. On the other hand, they cause high overheads in the execution time and memory, which consequently increase the energy consumption. In this work, we implement a set of software techniques based on different redundancy and checking rules. Furthermore, a low-overhead technique to protect the program execution flow is included. Tests are performed using the ARM Cortex-A9 processor. Simulated fault injection campaigns and radiation test with heavy ions have been performed. Results evaluate the trade-offs among fault detection, execution time, and memory footprint. They show significant improvements of the overheads when compared to previously reported techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.