Abstract

Thin chips are an interesting option for reducing the thickness of an electronics package. In addition to the reduced size, thinned chips are flexible and can dissipate more heat than thicker ones. Joining of the thin chips can be done using several different techniques. Of these, anisotropic conductive adhesives (ACA) are an interesting option as they have several advantages, such as low bonding temperature and capability for high density interconnections. The reliability of ACA flip chip joints under thermal cycling conditions has been found to increase when thinned chips are used. However, the effect of humidity has not been fully explored. In this study the reliability of thinned chips (50μm) under humid conditions was investigated using thin flexible substrates. Seven test lots were assembled with thinned chips using two different ACA films and liquid crystal polymer (LCP), polyimide (PI) and thin FR-4 substrates. A high humidity and high temperature test was used to study the reliability of the interconnections. A finite element model (FEM) was used to analyse the stresses in the test samples during testing. Several failures occurred during the test and significant differences between the substrates were seen. Additionally, bonding pressure was found to be a critical factor for the reliability under the humid conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call