Abstract
This paper presents a reliability modeling and analysis framework for load-sharing systems with identical components subject to continuous degradation. It is assumed that the components in the system suffer from degradation through an additive impact under increased workload caused by consecutive failures. A log-linear link function is used to describe the relationship between the degradation rate and load stress levels. By assuming that the component degradation is well modeled by a step-wise drifted Wiener process, we construct maximum likelihood estimates (MLEs) for unknown parameters and related reliability characteristics by combining analytical and numerical methods. Approximate initial guesses are proposed to lessen the computational burden in numerical estimation. The estimated distribution of MLE is given in the form of multivariate normal distribution with the aid of Fisher information. Alternative confidence intervals are provided by bootstrapping methods. A simulation study with various sample sizes and inspection intervals is presented to analyze the estimation accuracy. Finally, the proposed approach is illustrated by track degradation data from an application example.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have